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Abstract

Multi-temporal change detection is commonly used in the detection of changes to ecosystems. Differencing single band indices derived from
multispectral pre- and post-fire images is one of the most frequently used change detection algorithms. In this paper we examine a commonly used
index used in mapping fire effects due to wildland fire. Subtracting a post-fire from a pre-fire image derived index produces a measure of absolute
change which then can be used to estimate total carbon release, biomass loss, smoke production, etc. Measuring absolute change however, may be
inappropriate when assessing ecological impacts. In a pixel with a sparse tree canopy for example, differencing a vegetation index will measure a
small change due stand-replacing fire. Similarly, differencing will produce a large change value in a pixel experiencing stand-replacing fire that
had a dense pre-fire tree canopy. If all stand-replacing fire is defined as severe fire, then thresholding an absolute change image derived through
image differencing to produce a categorical classification of burn severity can result in misclassification of low vegetated pixels. Misclassification
of low vegetated pixels also happens when classifying severity in different vegetation types within the same fire perimeter with one set of
thresholds. Comparisons of classifications derived from thresholds of dNBR and relative dNBR data for individual fires may result in similar
classification accuracies. However, classifications of relative dNBR data can produce higher accuracies on average for the high burn severity
category than dNBR classifications derived from a universal set of thresholds applied across multiple fires. This is important when mapping
historic fires where precise field based severity data may not be available to aid in classification. Implementation of a relative index will also allow
a more direct comparison of severity between fires across space and time which is important for landscape level analysis. In this paper we present a
relative version of dNBR based upon field data from 14 fires in the Sierra Nevada mountain range of California, USA. The methods presented may
have application to other types of disturbance events.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Multispectral satellite data have become a common tool to
aid in the detection of changes to ecosystems. Differencing is
the most common technique used in multi-date change detection
and has been used extensively to assess fire severity (Brewer et
al., 2005; Cocke et al., 2005; Epting et al., 2005; Key & Benson,
2005a; Miller & Yool, 2002; Singh, 1989). Differencing can
result in a measure of absolute change that is correlated to the
pre-change image. For example, if a pixel where a small amount
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of photosynthetically active vegetation is measured in a pre-
change image experiences complete mortality before the
acquisition of the second image, a small change in living
biomass within the pixel will be measured by differencing
vegetation indices calculated from the two images. In contrast, a
large change in live biomass will be measured in a pixel
experiencing complete mortality that contained a large amount
of photosynthetically active vegetation in the pre-disturbance
image. However, both pixels experienced stand-replacing
events. Confusion between high and moderate severity classes
due to differing amounts of pre-fire cover in maps produced
with a differenced index has been noted as a problem by
researchers (Kokaly et al., in press). Measuring absolute change
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through techniques such as vegetation index differencing may
therefore not provide a complete ecological picture of the
disturbance event.

In the fire ecology literature burn severity is defined as the
effect of fire on an ecosystem (Agee, 1993; Sugihara et al.,
2006). Often burn severity is mapped in broad categories such
as low, moderate and high representing the sum of effects in all
structural strata in the ecosystem (DeBano et al., 1998). For a
forested system those strata could include soil, surface fuels,
herbaceous layer, understory shrubs, intermediate trees, and
dominant and co-dominant trees. Fire regime types of surface,
mixed lethal, and stand-replacing fire are commonly used as
descriptive definitions for burn severity categories of low,
moderate, and high (Arno & Fiedler, 2005; Brown & Smith,
2000). Returning to the example above, if all vegetation in the
two pixels with small and large amounts of pre-fire vegetation
experience complete mortality of live vegetation, i.e. stand-
replacing fire, both pixels would be categorized as having
experienced high severity fire. Thus the degree of severity
experienced by vegetation in each pixel is not dependent upon
the amount of vegetation present prior to the fire, but is
dependent on the percent of the vegetation that was affected,
making severity a relative measure. The same logic applies to
heterogeneous landscapes with multiple vegetation types. Using
an absolute measure of change could lead to incorrectly
characterizing burn severity in pixels which contain less pre-
disturbance chlorophyll on average than the surrounding
landscape due not only to differences in the amount of cover
but differences in the type of vegetation present. Correctly
mapping spatial patterns of severity is crucial however to
predict post-disturbance recovery since patch size and severity
control the number of surviving individuals and distance to seed
sources, which in turn influences succession processes (Pickett
& White, 1985; Turner et al., 1998).

Little discussion exists in the remote sensing literature about
relative indices although the issue of heterogeneous landscapes
affecting change detection classification accuracies is well
known (Coppin & Bauer, 1996). Projects that use a single post-
disturbance image to map landscape change must make
assumptions about the homogeneity of the pre-disturbance
landscape (Coppin & Bauer, 1996; Jakubauskas et al., 1990;
Vogelmann & Rock, 1988). Heterogeneous landscapes may be
accounted for through the use of reference data detailing pre-
disturbance conditions. Researchers have used various metho-
dological approaches to include pre-disturbance conditions
during classification. Pre-classification stratification by vegeta-
tion or cover type is a strategy that has been successfully
employed to create homogeneous landscapes out of hetero-
geneous ones (Brewer et al., 2005; Ekstrand, 1994; Franklin &
Wulder, 2002; Miller & Yool, 2002; Strahler, 1981; White et al.,
1996). Image classification techniques utilizing multi-date
imagery, such as principal components, artificial neural net-
works, etc., account for pre-disturbance conditions but training
classifiers is inherently more difficult to implement operation-
ally than thresholding single indices, especially for projects
where the landscape of interest crosses many images in space or
time (Brewer et al., 2005; Collins & Woodcock, 1996).
However, thresholding absolute change images would require
assessing each fire individually to derive properly calibrated
thresholds that would be unique to each fire (Key & Benson,
2005a).

The purpose of this study was to determine how to derive
thresholds that could be used to characterize severity resulting
from hundreds of fires occurring across a heterogeneous
landscape beginning with the 1984 launch date of Landsat
TM through present. Most fires did not have any field sampled
severity data to use in training a classifier, nor could expert
knowledge of each fire be gathered even if it still existed.
Vegetation maps of sufficient detail, scale, and timing would not
be available for stratification of all fires. The products of this
project will be used for subsequent future analysis at both site
and landscape levels. We therefore required a continuous
dataset from each fire that: 1.) correlated to severity experienced
by vegetation in each fire, 2.) was on the same scale such that
the same data value measured in each fire represented the same
level of severity, and 3.) resulted in categorical maps of severity
with satisfactory accuracy, though possibly not the highest
accuracy possible. The methodology used to produce the
severity data would have to be independent of any a-priori
knowledge of each fire. Due to these requirements we felt that
using a severity index derived from an absolute differencing
algorithm was not desirable for our application.

Our supposition was that a relative severity index that was on
the same scale for each fire and resulted in categorical maps of
severity with satisfactory accuracy could be developed by
incorporating pre-fire information in the form of a pre-fire
image with an absolute change image. In this paper we present
the methodology used to produce a relative burn severity index
and the results from 14 fires that occurred from 2002 through
2004 in the Sierra Nevada, California, USA.

2. Methods

2.1. Study area

All 14 fires included in this study fall within the Sierra
Nevada, California, USA (Fig. 1). The area ranges in elevation
from 60 m adjacent at the Sacramento River in the foothills to
4418 m at Mount Whitney. The study area encompasses
11.5 million acres of National Forest land, five National Parks
and National Monuments, and all or part of 32 counties in
California and Nevada. The study area includes parts of seven
ecological subregions of California (Miles & Goudy, 1997): the
Sierra Nevada, Sierra Nevada Foothills, Southern Cascades, the
Modoc Plateau, the Northwestern Basin and Range, and a small
portion of the Mono. The fires were greater than 400 ha in size
and cover a wide range of vegetation types and elevations
(Table 1).

2.2. Data

2.2.1. Field data
Field data quantifying severity were collected during the

summer field season after each fire occurred. This project used



Fig. 1. Location of study area fires within the Sierra Nevada of California, USA.
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the Composite Burn Index (CBI) field protocol (Fig. 2)
developed by Key and Benson (2005b) as a field measure of
the average burn condition found in a plot. The CBI protocol
records fire effects in five strata: 1) surface fuels and soils; (2)
Table 1
Fires used in the study

Fire Year National
forest

Fire
type

Alarm
date

Fire size
(ha)

Elevat
(m)

Birch 2002 Inyo Wildfire 7/1/2002 1091 1870–
Cannon 2002 Humboldt-Toiyabe Wildfire 6/15/2002 10973 1621–
Cone 2002 Lassen Wildfire 9/26/2002 824 1772–
Fuller 2002 Inyo Wildfire 7/12/2002 2719 1419–
McNally 2002 Sequoia Wildfire 7/21/2002 61491 1033–

Albanita 2003 Sequoia Fire Use 9/3/2003 899 2371–
Dexter 2003 Inyo Fire Use 9/2/2003 995 2330–
Kibbie 2003 Stanislaus Fire Use 7/29/2003 2752 1443–
Hooker 2003 Sequoia Fire Use 9/3/2003 997 2381–
Mountain
Complex

2003 Stanislaus Fire Use 7/20/2003 1709 2022–

Mud 2003 Stanislaus Fire Use 8/31/2003 1762 2010–
Whit 2003 Stanislaus Fire Use 8/31/2003 424 2007–
Power 2004 Edorado Wildfire 10/6/2004 6812 936–
Straylor 2004 Lassen Wildfire 7/22/2004 1385 1377–
herbs, low shrubs and trees less than 1 m; (3) tall shrubs and
trees 1 to 5 m; (4) intermediate trees; and (5) big trees. Each
stratum incorporates four or five variables that are visually
estimated and ranked between zero and three. Values for all
ion Vegetation type

2549 Singleleaf pinyon pine, Sagebrush
3117 Singleleaf pinyon pine, Sagebrush, Mixed Conifer, Jeffrey Pine
1952 Jeffrey pine-ponderosa pine, Mixed Conifer, Jeffrey pine
3355 Sagebrush
3061 Interior live oak, Scrub oak, Foothill pine, Black oak, Canyon live oak,

Ponderosa pine, Mixed conifer, Jeffrey pine, White fir
2866 Mixed Conifer, Jeffrey pine, Lodgepole pine, Red fir
2787 Aspen, Jeffrey pine, Lodgepole pine
2475 Mixed conifer, Jeffrey pine-ponderosa pine, Jeffrey pine, White Fir
2803 Mixed Conifer, Jeffrey pine, Lodgepole pine, Red fir
2535 Mixed conifer, Jeffrey pine, Lodgepole pine, White fir, Red fir,

Western white pine
2639 Mixed conifer, Jeffrey pine, Lodgepole pine, White fir, Red fir
2364 Mixed conifer, Jeffrey pine, Lodgepole pine, White fir, Red fir
2098 Black oak, Ponderosa pine, Mixed conifer, Jeffrey pine, White fir
1785 Ponderosa pine, Jeffrey pine, Western juniper



Fig. 2. Composite Burn Index (CBI) field data form from Key and Benson (2005b).
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strata were averaged to create a severity index value for the
whole plot ranging between zero (unburned) and three
(highest severity). Although CBI includes fire effects to
soils, the index is heavily weighted to measuring fire effects to
vegetation.

Choosing which CBI values to use as thresholds between
severity categories is somewhat of a value judgment. Similar
but distinct severity maps could be produced depending on
management objective, analysis criteria, etc. For this project we
chose to place the thresholds halfway between the values listed
on the CBI data form shown in Fig. 2 for adjacent categories to
create four severity categories; unchanged, low, moderate, and
high. For example, the CBI data form indicates a “moderate”
severity occurs when CBI ranges between 1.5 and 2.0, and
“high” severity occurs between 2.5 and 3.0. We therefore chose
2.25 as the threshold between “moderate” and “high” severity
categories. The exception to the mid-point rule was the
threshold between unchanged and low for which we chose



Table 2
CBI severity category definitions

Severity
category

Field measured
severity value

Definition

Unchanged 0–0.1 One year after the fire the area was
indistinguishable from pre-fire conditions. This
does not always indicate the area did not burn.

Low 0.1–1.24 Areas of surface fire occurred with little change
in cover and little mortality of the structurally
dominant vegetation.

Moderate 1.25–2.24 The area exhibits a mixture of effects ranging
from unchanged to high.

High 2.25–3.0 Vegetation has high to complete mortality.

Table 3
Imagery used for each fire

Fire Alarm
date

Landsat
path/row

Pre-fire
image date

Post-fire
image date

Sensor

Birch 7/1/2002 42/34 6/7/2002 6/10/2003 Landsat 5
Cannon 6/15/2002 43/33 6/14/2002 7/3/2003 Landsat 5
Cone 9/26/2002 44/32 9/25/2002 9/12/2003 Landsat 5
Fuller 7/12/2002 42/34 7/9/2002 7/12/2003 Landsat 5
McNally 7/21/2002 41/35 6/16/2002 6/16/2003 Landsat 5
Albanita 9/3/2003 41/35 8/22/2003 8/8/2004 Landsat 5
Dexter 9/2/2003 42/34 7/12/2003 7/30/2004 Landsat 5
Kibbie 7/29/2003 42/34 7/12/2003 7/30/2004 Landsat 5
Hooker 9/3/2003 41/35 8/22/2003 8/8/2004 Landsat 5
Mountain
Complex

7/20/2003 43/33 7/3/2003 7/5/2004 Landsat 5

Mud 8/31/2003 43/33 7/3/2003 7/5/2004 Landsat 5
Whit 8/31/2003 43/33 7/3/2003 7/5/2004 Landsat 5
Power 10/6/2004 43/33 7/5/2004 8/25/2005 Landsat 5
Straylor 7/22/2004 44/32 9/12/2003 9/1/2005 Landsat 5
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0.1. Table 2 lists the CBI values that were used to define severity
categories for this study. We labeled the lowest severity class
“unchanged” instead of “unburned”. Since we measure severity
after one growing season, it is therefore difficult sometimes to
distinguish areas which have recovered after very low severity
fire from unburned areas via satellite imagery.

The field protocol used in this project measured fire effects in
a 90 m diameter circular plot. It is often difficult to visually
assess a whole 90 m diameter plot from the center. In addition to
the CBI protocol, field measurements were made for other
purposes that are not presented here, but in acquiring those
measurements the whole 90 m plot was visited and CBI
estimates were made after visiting the entire plot. Plots were
randomly located between 300 m and 400 m along randomly
placed transects. Steep slopes were avoided for personnel safety
reasons.

2.2.2. Imagery and preprocessing
Imagery used in this study (Table 3) was chosen such that

pre- and post-fire dates were as close to anniversary dates as
possible to minimize differences in phenology and sun angle
(Singh, 1989). All post-fire images were acquired the year
following the fire and were smoke-free. All images were
orthorectified using a terrain correction algorithm. To reduce
storage and image processing times, each image was clipped to
include an unburned area around each fire. All subsequent
processing was performed only on the subset. The pre- and post-
fire subset images for each fire were co-registered to within a
pixel. All Landsat 5 images were converted to reflectance as
described by Chander and Markham (2003). The change
detection algorithm incorporates only the near-infrared and
mid-infrared wavelengths measured by Landsat TM channels 4
and 7. Atmospheric scattering is negligible in the infrared bands
(Avery & Berlin, 1992). Therefore we chose not to perform any
atmospheric corrections. All image processing was performed
using ERDAS Imagine version 8.7 on a Windows 2000
workstation.

2.3. Change detection algorithm

Vegetation indices have been shown to enhance detection of
vegetation (Tucker & Sellers, 1986). Ratio-based vegetation
indices also minimize topographic-induced variance (Avery &
Berlin, 1992). Vegetation index differencing has been shown to
outperform other multi-date methods such as image differen-
cing and ratioing (Lyon et al., 1998; Nelson, 1983). Recently the
normalized burn ratio (NBR) has gained consideration, mostly
in the United States, for detecting fire scars (Key & Benson,
2005a). NBR is formulated like the normalized difference
vegetation index (NDVI) except Landsat TM mid-infrared band
7 is used in place of the red band as follows:

NBR ¼ band4−band7
band4þ band7

� �

Band 7 is employed due to the band 4 band 7 difference
showing the largest change between pre- and post-fire images,
especially in forested landscapes (Key & Benson, 2005a; Lopez
Garcia & Caselles, 1991; Miller & Yool, 2002). Band 4
encompasses near-infrared 0.76–0.90 μm wavelengths primar-
ily sensitive to the chlorophyll content of live vegetation. Band
7, which records middle infrared 2.08–2.35 μm wavelengths, is
sensitive to water content in both soils and vegetation, the
lignose content of non-photosynthetic vegetation, and hydrous
minerals such as clay, mica, and some oxides and sulfates
(Avery & Berlin, 1992; Elvidge, 1990). Band 7 wavelengths
have been shown to be sensitive in separating non-photo-
synthetically active (dead) wood from soil, ash, and charred
wood in a post-fire environment (Jia et al., 2006; Kokaly et al.,
in press). As a result of using these two bands, NBR is
particularly sensitive to the changes in the amount of live green
vegetation, moisture content, and some soil conditions which
may occur after fire. We used the delta NBR (dNBR) in this
study since it has been shown to perform at least as well if not
better than other index differencing change detection methods
in capturing the spatial complexity of severity within fire
perimeters (Brewer et al., 2005; Epting et al., 2005; Thode,
2005). NBR values were multiplied by 1000 and converted to
integer format to follow the convention established by Key and
Benson (2005a). A focal mean algorithm was used to average
pixel values in a 3×3 pixel window to match the 90 m diameter
field plots. The dNBR for each fire was normalized to account



Fig. 3. Typical NBR and dNBR values in two plots with moderate (A) and high (B and C) percent canopy cover before and after experiencing high (A and B) or
moderate severity fire (C). An NBR value of 25 indicates little to no live vegetation exists, where as a value of 800 indicates dense vegetation.
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for inter-annual differences in precipitation by subtracting the
average dNBR value sampled from an unburned area outside
the fire perimeter.

2.4. Relative index development

Examining an example of a heterogeneous landscape, Fig. 3
depicts three scenarios within a fire perimeter in a conifer forest
environment. Represented are two plots, one with moderate
(Fig. 3A) and another with high (Fig. 3B) amount of pre-fire
vegetation, both experiencing high severity fire and almost
complete vegetation mortality. The resulting dNBR value of the
more densely vegetated pixel is twice that of the moderately
vegetated plot. If the more densely vegetated plot (Fig. 3C) had
experienced moderate severity fire with only half of the
vegetation experiencing mortality though, the resulting dNBR
value would be around 400, higher than the dNBR value of 375
measured in the moderately vegetated plot experiencing high
severity fire. Thus thresholding a dNBR image to create
severity categories in this case would result in a misclassifica-
tion error.
If burn severity is a relative measure, then when the
vegetation in a pixel experiences stand-replacing fire, the
result is high severity despite the amount of vegetation pre-
fire. Therefore severity should be uncorrelated to the amount
of pre-fire vegetation cover. Fig. 4A confirms that field
measured burn severity is uncorrelated with pre-fire NBR
values (r=.17). This is the relationship that we want to
emulate with a satellite measured index of severity. Plotting
dNBR values against pre-fire NBR values (Fig. 4B) on the
other hand, results in a moderately high correlation of r=.53.
Thresholding dNBR in Fig. 4B to create severity categories
would most likely result in never correctly classifying a high
severity plot that had low to moderate pre-fire vegetation
cover (low pre-fire NBR). We therefore examined relativizing
dNBR by dividing dNBR with the pre-fire NBR to eliminate
the correlation to the pre-fire NBR and so that the relationship
of resulting satellite derived severity index to pre-fire NBR
would emulate the relationship of field measured severity to
pre-fire NBR.

Regression models of CBI field measurements to dNBR
and Relative dNBR were developed to determine whether



Fig. 4. CBI and dNBR values for all plots in all 14 fires colored by CBI severity
category plotted against pre-fire NBR values: (A) field measured CBI severity
values, r=.17; (B) Landsat derived dNBR values, r=.53.

Fig. 5. Pre-fire NBR values for all plots in all 14 fires versus: (A) dNBR
divided by pre-fire NBR values colored by CBI severity category; (B)
RdNBR=dNBR divided by the square-root of pre-fire NBR values colored
by CBI severity category. Horizontal lines represent low (69), moderate
(316), and high (641) RdNBR thresholds derived from nonlinear regression
model.
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relativizing dNBR would on average, over all fires, improve
map accuracies over dNBR. Threshold values were computed
using the regression models and confusion matrices computed
using all field plots as an indicator of model improvement.

3. Results and discussion

3.1. Relative index

Our goal is to develop a relative index derived from satellite
acquired data which when plotted against pre-fire NBR values
emulates the shape of field-measured severity values against
pre-fire NBR values (Fig. 4A). The customary mathematical
formulation of a relative change index is to divide the change
value by the pre-disturbance index value. The absolute change
index is therefore converted to a percent and the resulting
relative change index varies linearly with the variable of
interest, which is severity in our case.

Fig. 5A shows the result of dividing dNBR by pre-fire
NBR. The shape of the resulting data space does not emulate
very well the data space of field measured severity against pre-
fire NBR values shown in Fig. 4A. Locations with low to
moderate pre-fire NBR values may result in exceptionally
large values. It appears that the “boosting” effect only occurs
within fire perimeters; increases with severity and decreasing
amounts of pre-fire vegetation, and in some locations may be
enhanced with certain soil types. Key and Benson (2005a)
states that NBR is sensitive to char, mineral soil, ash, and
changes in soil color. Experiments relativizing NDVI did not
exhibit the same elevated values at low pre-fire values. We
therefore hypothesize that the effect is caused by the use of
Landsat mid-infrared band 7 in NBR. Since band 7
wavelengths are sensitive to water content in both soil and
vegetation, hydrous minerals, iron oxides, lignose in non-
photosynthetic vegetation, ash, and char, more than one
mechanism may be involved (Avery & Berlin, 1992; Jia et al.,
2006; Kokaly et al., in press). Another complicating factor is
that CBI is a linear combination of up to 23 factors, only one
of which is soil related. The remaining factors are all
vegetation related (Fig. 2). As a result, CBI reaches a
maximum value when there is complete vegetation mortality
as opposed to dNBR which varies in value after complete
vegetation mortality resulting in a nonlinear relationship of
dNBR to CBI (van Wagtendonk et al., 2004). As a first order



Fig. 6. Nonlinear regression models using CBI measured in 741 plots on 14 fires to (A) dNBR R2=0.4939 and (B) RdNBR R2=0.6092. The heteroscedasticity
exhibited by the residuals in the dNBR model is reduced in the RdNBR model.

Table 5
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correction we chose to take the square root of the pre-fire
NBR divisor to produce a data space as shown in Fig. 5B that
more closely resembles the field data versus pre-fire NBR in
Fig. 4A. We therefore used the following equation as our
relative dNBR (RdNBR) change index:

RdNBR ¼ PreFireNBR−PostFireNBR
SquareRootðABSðPreFireNBR=1000ÞÞ

� �

NBR values generally range between 1 and −1 just like
NDVI. We scale NBR by 1000 to transform the data to integer
format; therefore the pre-fire NBR must be divided by 1000 in
the RdNBR formula. Taking the absolute value of the pre-fire
NBR in the denominator allows computing the square-root
without changing the sign of the original dNBR. Positive
RdNBR values remain representing a decrease in vegetation
just like dNBR while negative values represent increased
vegetation cover. The absolute value function in the
denominator is required since the square root of a negative
Table 4
dNBR and RdNBR regression modeled thresholds

Severity category Field measured
CBI severity value

Predicted
dNBR

Predicted
RdNBR

Unchanged 0–0.1 <41 <69
Low 0.1–1.24 41–176 69–315
Moderate 1.25–2.24 177–366 316–640
High 2.25–3.0 >=367 >=641
number mathematically results in an imaginary number.
Strongly negative NBR values would indicate a larger
reflectance in band 7 than band 4. This case only occurs
over areas that are not vegetated. If the area is not vegetated
then fire cannot occur which would result in a zero value in
the numerator. Operationally, negative pre-fire values do occur
due to sensor noise, miss-registration, etc. However, negative
pre-fire NBR values resulting from sensor noise and miss-
registration fall within two standard deviations of the average
unburned pixel value. Therefore the absolute function has the
effect of putting those pixels into the unburned category as
opposed to an undefined category.

There is a great deal of classification confusion between
severity categories in the dNBR especially at low pre-fire
NBR values (Fig. 4B). The Relative dNBR does not correct
for this confusion (Fig. 5B). There is an inherent problem
Confusion matrix of CBI (columns) vs. dNBR classified data (overall
Kappa=0.411)

Class name Unchanged Low Moderate High Total User's
accuracy (%)

Unchanged 23 34 5 5 67 34.3
Low 5 127 68 21 221 57.5
Moderate 47 154 51 252 61.1
High 4 66 131 201 65.2
Total 28 212 293 208 741
Producer's
accuracy (%)

82.1 59.9 52.6 63.0 58.7



Table 6
Confusion matrix of CBI (columns) vs. RdNBR classified data. (Overall
Kappa=0.421)

Class name Unchanged Low Moderate High Total User's
accuracy (%)

Unchanged 21 27 2 50 42.0
Low 7 116 79 9 211 55.0
Moderate 61 157 49 267 58.8
High 8 55 150 213 70.4
Total 28 212 293 208 741
Producer's
accuracy (%)

75.0 54.7 53.6 72.1 59.9
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trying to derive a fire severity index from satellite imagery in
forested systems. There is a limit to the sensitivity of passive
sensors to observe under forested canopies. Since CBI is a
linear combination of variables from all structural strata,
some fire effects under the tree canopy may be hidden from
the sensor. Errors in ocular estimates of severity variables in
the field most likely also contribute to confusion errors.
Since we are analyzing fire from multiple Landsat path/row
combinations and multiple years, all image values were
converted to reflectance at the sensor and we tried to
normalize variations in dNBR values from fire to fire.
Despite these efforts, variations in sensor calibration, sun
angle and annual weather patterns may contribute to
confusion errors seen in Fig. 4.
Fig. 7. Straylor Fire (A) continuous dNBR, and (B) continuous RdNBR. Increasing d
areas that exhibited increased greenness post-fire. High severity patches in the Rd
southwest of the fire perimeter are shallow lakes that had water pre-fire but were dr
3.2. Regression analysis

To determine whether RdNBR produces a better relation-
ship than dNBR to ground based severity measurements,
nonlinear regression analysis was performed on dNBR and
RdNBR values against field measured CBI data. Regression
analysis was performed using data collected on 14 fires that
occurred in multiple vegetation types within the Sierra Nevada
Framework study area during 2002 through 2004 (Table 1).
The dNBR nonlinear regression model (Fig. 6A) resulted in an
R2 of .4939 while the RdNBR model (Fig. 6B) achieved a
higher R2 of .6092. The heteroscedasticity characteristic
exhibited by increasing variance in the residuals for the
dNBR regression model is also reduced with the RdNBR
model. Table 4 details the threshold values computed from the
dNBR and RdNBR regression models corresponding to the
CBI thresholds for each severity category.

3.3. Model assessment

To evaluate whether RdNBR thresholds derived from the
above regression analysis produced more accurate results
than the dNBR thresholds, we computed confusion matrices
using all field plots (Tables 5 and 6). Comparing the two
confusion matrices, overall accuracies and Kappa statistics
were not significantly different. As expected, the high
severity class producer and user accuracies for RdNBR
NBR and RdNBR values indicate increasing severity. Negative values represent
NBR are more homogeneous than those in the dNBR. Bright areas south and
y post-fire. (C) dNBR classification, and (D) RdNBR classification.



Fig. 8. Straylor Fire (A) dNBR and (B) RdNBR values plotted against pre-fire
NBR values coded by field sampled CBI severity category. Horizontal lines
indicate the optimal RdNBR threshold between moderate and high around 640
and dNBR around 400.
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were significantly improved over dNBR. The accuracy of the
moderate category remained about the same. Accuracies for
both unchanged and low categories generally decreased with
the exception of the user accuracy for the unchanged
category which improved.

Overall accuracy should never be the only criteria for
evaluating a classification. One should always examine why
values do not fall on the diagonal of the error matrix
(Congalton & Green, 1999). Classification accuracies of the
unchanged and low classes decrease since low pre-fire NBR
areas are more often classed as unchanged to low regardless
of the actual severity with dNBR. Relativizing the dNBR
increases the severity on some areas with low to moderate
pre-fire NBR values so that some high severity areas become
correctly classed as high and some low severity areas are
miss-classified as moderate and high as shown in Fig. 5 and
Tables 5 and 6. It appears that about as many areas shift from
being correctly classified to being miss-classified thereby
resulting in similar overall classification accuracies. However,
the user and producer accuracies for the high severity
category increase.

3.4. Results for selected fires

A detailed examination of dNBR and RdNBR classifications
derived from the above regression based thresholds is presented
below for three fires in various vegetation types. In the first
example, the Straylor fire occurred in coniferous forest on the
east side of the Sierra Nevada with heterogeneous percent cover
and species adapted to xeric conditions. The second example,
the Power fire, occurred on the more mesic west side of the
Sierra Nevada in coniferous forest with denser and more
homogenous percent cover. The final example is also from the
east side of the Sierra Nevada but at lower elevation in a mixture
of Pinyon pine and sagebrush.

3.4.1. Straylor fire — heterogeneous percent cover
The 2004 Straylor fire occurred on the east side of the

Sierra Nevada in Ponderosa pine, Jeffrey pine, and Western
juniper vegetation types (Table 1). Pre-fire percent canopy
cover derived from pre-fire digital orthophotos averaged 36%
in field plots where post-fire effects were measured. The
continuous dNBR and RdNBR data and resulting classifica-
tions using the regression derived thresholds are shown in Fig.
7. Comparing the continuous dNBR and RdNBR data (Fig.
7A and B) RdNBR values appear to be more uniform within
areas mapped as high severity. The variability in dNBR values
in areas of high severity is related to the amount of live pre-
fire vegetation in each pixel. dNBR and RdNBR values
plotted against pre-fire NBR values coded by field sampled
CBI severity category for 48 field plots are provided in Fig. 8.
Examining Fig. 8, the threshold between moderate and high
severity categories could be optimally placed to minimize
commission and omission errors for the high severity category.
It appears that the optimum RdNBR threshold would be
around 641 as listed in Table 4. The optimum threshold for the
dNBR is a little less obvious due to the correlation of dNBR to
pre-fire NBR values. It may be around a value of 400 which is
higher than the modeled high dNBR threshold listed in
Table 4. Separation between moderate and high severity pixels
in the RdNBR case appears to be more linear allowing more
moderate and high severity plots to be correctly classified,
therefore minimizing classification errors for the high severity
class.

3.4.2. Power fire — homogeneous percent cover
The 2004 Power fire occurred in predominately coniferous

forest on the west side of the Sierra Nevada. Vegetation types
within the fire range from Black oak and Ponderosa pine at the
lower elevations to Mixed conifer, Jeffrey pine and White fir
at the higher elevations (Table 1). Pre-fire percent canopy
cover was denser on average than that seen in the Straylor fire,
averaging 52% in field plots. The continuous dNBR and
RdNBR data and resulting classifications using the regression
derived thresholds are shown in Fig. 9. Differences between
the continuous dNBR and RdNBR are minor except that it
would appear that RdNBR data are scaled differently and
therefore classifications derived from either dataset would
most likely be similar. However, the two classifications in Fig.
9C and D are very different since the dNBR classification was
derived using thresholds derived from a regression model
using data collected in plots from 14 fires in various
vegetation types. dNBR and RdNBR plotted against pre-fire



Fig. 9. Power Fire (A) continuous dNBR, and (B) continuous RdNBR. Increasing dNBR and RdNBR values indicate increasing severity. Negative values represent
areas that exhibited increased greenness post-fire. The variation in the continuous dNBR and RdNBR data looks similar except the RdNBR values have a larger
range. (C) dNBR classification, and (D) RdNBR classification. Classified data are different since they were derived using the regression based thresholds from all
14 fires.
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NBR values coded by field sampled CBI severity category for
93 field plots are provided in Fig. 10. Pre-fire NBR values are
on average higher than those in the Straylor since the average
pre-fire canopy cover was higher pre-fire in the Power fire
than the Straylor fire. It appears that the optimum RdNBR
threshold would be around 641 just like the Straylor while the
dNBR optimum may be around a dNBR value of 470 which is
higher than the modeled high dNBR threshold listed in Table
4. The separation between severity classes in the dNBR and
RdNBR data appears to be similar and again indicates that
optimum classifications of the two would result in similar
accuracies. Even though similar accuracies could be achieved,
the RdNBR produces continuous data on the same scale across
fires, allowing the use of common thresholds. However, as
Key and Benson (2005a) indicate, thresholding dNBR requires
assessing each fire individually to derive properly calibrated
thresholds that will be unique to each fire.

3.4.3. Birch fire — heterogeneous vegetation types
The 2002 Birch fire occurred on the Inyo National Forest

(Table 1). Before the fire occurred, Singleleaf pinyon dominated
the upper elevations while sagebrush dominated the lower
elevations. The continuous dNBR and RdNBR data and
resulting classifications using the regression derived thresholds
listed in Table 4 are shown in Fig. 11. RdNBR produced higher
values in areas dominated by sagebrush than did dNBR,
resulting in most sagebrush being classed as high severity by
RdNBR as opposed to low to moderate by dNBR. Almost all of
the Birch fire was high severity as shown in Fig. 11D. Thirty-
one out of 33 post-fire field plots were high severity. Photos
from three representative plots are included and the plot
locations are displayed on each of the maps in Fig. 11. dNBR
values of plots 112 and 98 are similarly low with both plots
being classified as low severity (Fig. 11A and C). The dNBR
value for Plot 116 is high resulting in a high severity
classification. However, plot 98 has a high RdNBR value
causing it to be assigned a high severity classification (Fig. 11B
and D). Plots 112 and 116 retain the same severity category in
both dNBR and RdNBR classifications. The post-fire photo of
Plot 112 dominated by Pinyon pine shown in Fig. 11E indicates
that the plot suffered little effect from the fire. The Pinyon pine
stand in Plot 116 experienced complete mortality as shown in
Fig. 11F. Plot 98 plot, dominated by sagebrush before the fire,
also experienced complete mortality as shown in Fig. 11G and
was therefore correctly classified in the RdNBR classification.
Some areas where pre-fire cover was dominated by sagebrush
on the east side of the fire exhibited RdNBR values greater than
2000 (Fig. 11B). These high RdNBR values appear to be a
function of the sensitivity of Landsat band 7 to soil
characteristics and only occur in areas where pre-fire vegetation
is sparse and severity is high. They are higher than those
normally seen in high severity areas that were densely vegetated
pre-fire. Although the values were very high, they were
correctly classified as high severity. Thus, RdNBR appears to



Fig. 10. Power Fire (A) dNBR and (B) RdNBR values plotted against pre-
fire NBR values coded by field sampled CBI severity category. The
delineation between severity categories is similar with RdNBR and dNBR
which would result in classifications with similar accuracies. Horizontal lines
indicate the optimal RdNBR threshold between moderate and high around
640 just like the Straylor in Fig. 9, and dNBR around 470 which is higher
than for the Straylor.
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do an acceptable job of producing severity data across
vegetation types on the same scale.

4. Conclusions

We have demonstrated in this paper that thresholding a
relative change detection image may be more appropriate than
an absolute change image for mapping burn severity when
severity is defined as the effects of fire primarily to vegetation.
Using a relative index instead of an absolute index to map
severity has two primary advantages: 1.) a relative index
provides a more consistent definition of severity allowing
comparison of fires across space and time, and 2.) classification
of a relative index should result in higher accuracies for the high
severity category in heterogeneous landscapes over those
resulting from classifying an absolute index. In homogenous
landscapes, absolute and relative indices could produce
classifications with similar accuracies. The absolute index
may require very different thresholds though. Fires in homo-
geneous sagebrush communities will have much lower thresh-
olds than fires in coniferous forest for example. Direct
comparison of severity maps between fires derived from
different thresholds, however, can only be accomplished by
using categorical data.
Severity is often lumped into categories so that we can
easily communicate ideas and concepts though severity
actually occurs on a continuum. The ability to compare a
continuous severity index across time and space is a
requirement for the successful analysis of landscape level
processes, such as habitat models. These models can then be
calibrated from one or multiple fires and be applied across the
landscape. Lumping severity data on each fire into broad
categories such as low, medium and high, can compensate for
data from each fire being scaled differently. The problem with
developing models with thematic data occurs when the
process being modeled is driven by thresholds that differ
from those used to create the severity classification. For
example, if an animal species is dependent on at least 50%
cover and the severity classification thresholds are based upon
25 and 75% cover, the analysis does not match. All severity
data used as input to the model would then need to be
reclassified so that the thematic categories match the processes
thresholds. If the continuous data from each fire are on
different scales then that reclassification process could be
prohibitive. In addition, precise knowledge of fire effects on
each fire required for optimum classification may not even be
available.

Overall accuracy was not improved by the relative index.
However, overall accuracy should never be the only criteria for
evaluating a classification. There will always be confusion in
the unchanged, low, and moderate categories since it is difficult
to see under tree canopies using passive sensors. Additionally,
many different combinations of effects can result in the same
CBI score. Stand-replacing fire, i.e. high severity, should be
easiest to map and result in high user and producer accuracies.

Accurately mapping the spatial size and extent of severity
patches is important for site level recovery projects and for
understanding overall landscape patterns created by fire.
Thresholding an absolute index such as dNBR in heterogeneous
landscapes may lead to under-representing high severity
patches. In this study smaller commission and omission errors
in the high burn severity class resulted from using RdNBR.
Ecologically, severely burned patches are of interest since patch
size and severity control the number of surviving individuals
and distance to seed sources, which in turn influences
succession processes. Severely burned areas are a focus for
land managers after wildfire due to the slower vegetation
responses of some species, higher erosion potential, issues of
invasive species, changes in wildlife habitat components,
reduced recreation potential, and concerns with the wildland
urban interface. Minimizing classification errors for the high
severity class will prove beneficial to land managers since it
allows identification of more areas that are severely burned.
Implementation of a relative index in the form of RdNBR would
appear to achieve that goal for fire severity mapping.

There may be no one perfect index for mapping fire effects.
A combination of both the dNBR and RdNBR may provide
more complete information than either one alone. Since dNBR
is correlated to the amount of pre-fire photosynthetically active
vegetation, it provides an indication of how much vegetation
was killed. In contrast, RdNBR measures the amount of



Fig. 11. Birch Fire (A) continuous dNBR, (B) continuous RdNBR, (C) dNBR classification, (D) RdNBR classification, (E) photo of plot 112, (F) photo of plot 116, and
(G) photo of plot 98. Locations of plots 98, 112, and 116 are indicated on the continuous and classified dNBR and RdNBR data. Plots 112 and 116 exhibiting low and
high severity respectively in Pinyon pine are correctly classified by both dNBR and RdNBR. Plot 98 with severely burned sagebrush is incorrectly classified as low to
moderate severity by dNBR and correctly as high severity by RdNBR.
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vegetation killed in relationship to the amount of pre-fire
vegetation.

The formulation of RdNBR derived in this project with the
square root of the pre-fire NBR divisor was influenced by the
manor in which locations with low to moderate pre-fire NBR
values may become exceptionally large. It appears that the
“boosting” effect seen in the RdNBR increases with severity
and decreasing amounts of pre-fire vegetation. The effect is
most likely due to the inclusion of Landsat band 7 in NBR
which is sensitive to not only vegetation but also soil
characteristics. Applying the square root in the denominator
appears to have been mostly successfully in correcting for the
“boosting” effect that was seen in the data used for this study. It
is possible that the square root function is not optimal or even
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required in other environments. That remains to be tested. It is
likely however that some transformation is required when a
relative dNBR is used to model CBI since NBR is sensitive to
soil conditions and CBI is primarily a vegetation severity
measurement.

The data used in this study came primarily from conifer and
live oak systems in the Sierra Nevada. We feel confident that the
methods presented here will translate to other ecosystems but
further exploration is needed. The thresholds we have derived
here reflect how we defined our CBI thresholds. Any other
definition of severity will most likely result in different
thresholds.

We have demonstrated in this paper that thresholding a
relative change detection image may be more appropriate than
an absolute change image when assessing the relative impact of
fire to vegetation. Fire is just one form of disturbance however.
It is logical that the use of relative versus absolute indices would
extend to mapping severity due to other disturbances. This
relative concept should be considered when an ecological
change perspective is desired.
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